Supporting Information

Antibody-Mimetic Peptoid Nanosheets for Molecular Recognition

Gloria K. Olivier, Andrew Cho, Babak Sanii, Michael D. Connolly, Helen Tran, and Ronald N. Zuckermann

Contents

Figure S1. Powder X-ray diffraction (XRD) spectra 2
Figure S2. Grazing incidence X-ray diffraction (GIXD) of peptoid monolayers 3
Figure S3. X-ray reflectivity of peptoid monolayers 4
Figure S4. Diketopiperazine (DKP) crystal structures 5
Figure S5. Isoelectric focusing (IEF) gel electrophoresis. 6

Figure S1. Powder X-ray diffraction spectrum of a dry, pelleted stack of nanosheets prepared from either: 1 (blue), $\mathbf{8}$ (green), or $\mathbf{3}$ (red). The spectra are normalized by the intensity of the $4.6 \AA$ peak, thereby revealing the noticeably higher intensity exhibited by 3 in the $q=$ $0.25 \AA^{-1}$ to $1.5 \AA^{-1}$ range which is attributed to diffuse scattering from the randomly oriented, disordered loop domains of 3 . The three equally spaced peaks (denoted by blue arrows) arise from the 2.8 nm thickness of the Peptoid 1 bilayer.

Figure S2. Comparison of the grazing incidence X-ray diffraction peak obtained from the Peptoid $\mathbf{3}$ monolayer at the air-water interface, after compressing the monolayer to a fixed surface pressure of $37 \mathrm{mN} / \mathrm{m}$ (blue), and the powder X-ray diffraction peak obtain from a dry pellet of Peptoid 3 nanosheets (red), at the $4.6 \AA$ spacing, corresponding to the lateral distance between neighboring polymer chains.

Figure S3. Fresnel-normalized reflectivity data obtained from the Peptoid 1 (blue) and 3 (red) monolayers at equilibrium surface pressure (open symbols) and after compressing each peptoid monolayer to a fixed surface pressure of $37 \mathrm{mN} / \mathrm{m}$ (closed symbols). Error bar (vertical line), corresponding to the standard deviation, is included with each point.

N-2-Phenylethyl-N -2-(4-biphenylethyl)diketopiperazine

Figure S4. Diketopiperazine (DKP) crystal structures, for predicting aromatic packing of phenylethyl and biphenylethyl sidechains within the nanosheets. The crystal structure of compound 9 (shown at left) is compared with that of N,N'-Bis-(2-phenylethyl)diketopiperazine (right), previously reported by Murnen et al.[1] Compound 9 was synthesized as previously described[1] and then crystallized from chloroform. Crystal structures were determined at UC Berkeley's CheXray facility. The crystal structure file (4-Biphenylethyl-2-phenylethyl-DKP.cif) for compound 9 is available in Supporting Information.

Figure S5. Quantification of the fractional composition of two-component peptoid nanosheets by denaturing the nanosheets into free polymer strands with 0.2% sodium dodecyl sulfate and measuring the relative amount of each strand present in the mixture using isoelectric focusing (IEF) gel electrophoresis. (A) Representative IEF gel image, used for quantification. Lanes 1 and 12 of the gel contain the IEF protein standard. The intensity of the Peptoid 1 and 5 bands in the gel was quantified with ImageJ software and used to calculate the fractional percentage (mole fraction) of each compound present in a given nanosheet preparation. Nanosheet yield was computed as the sum of the intensities of the band(s) appearing in a given lane of the gel. (B) Correlation between solution composition and nanosheet composition for nanosheets made from peptoid solutions containing different mixing ratios of 1 and 5 . (C) Impact of the two-component mixing ratio on nanosheet yield, normalized by the yield obtained with $0 \mathrm{~mol}-\%$ Peptoid 5 (pure 1) nanosheets. In panels B and C, the axis label of Loop Peptoid is synonymous with Peptoid 5.

References

[1.] Murnen, H.K.; Rosales, A.; Jaworski, J.N.; Segalman, R.A.; Zuckermann, R. N. Hierarchical Self-Assembly of a Biomimetic Diblock Copolypeptoid into Homochiral Superhelices. J. Am. Chem. Soc. 2010, 132, 16112-16119.

