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ABSTRACT: Certain sequences of peptoid polymers (syn-
thetic analogs of peptides) assemble into bilayer nanosheets
via a nonequilibrium assembly pathway of adsorption,
compression, and collapse at an air−water interface. As with
other large-scale dynamic processes in biology and materials
science, understanding the details of this supramolecular
assembly process requires a modeling approach that captures
behavior on a wide range of length and time scales, from those on which individual side chains fluctuate to those on which
assemblies of polymers evolve. Here, we demonstrate that a new coarse-grained modeling approach is accurate and
computationally efficient enough to do so. Our approach uses only a minimal number of coarse-grained sites but retains
independently fluctuating orientational degrees of freedom for each site. These orientational degrees of freedom allow us to
accurately parametrize both bonded and nonbonded interactions and to generate all-atom configurations with sufficient accuracy
to perform atomic scattering calculations and to interface with all-atom simulations. We have used this approach to reproduce all
available experimental X-ray scattering data (for stacked nanosheets and for peptoids adsorbed at air−water interfaces and in
solution), in order to resolve the microscopic, real-space structures responsible for these Fourier-space features. By interfacing
with all-atom simulations, we have also laid the foundation for future multiscale simulations of sequence-specific polymers that
communicate in both directions across scales.

Many of the most important processes in molecular
biology, including allostery,1,2 enzyme catalysis,3 molec-

ular recognition,4 protein homeostasis,5 and nucleic acid
metabolism,6 involve the cooperative motion of large, precisely
self-assembled7 biomolecules. Engineering synthetic materials
with similarly sophisticated functionality will require methods
to relate the chemical sequence of large molecules (e.g.,
biomolecules or sequence-defined synthetic polymers) to their
self-assembled form and function. These methods must span
many orders of magnitude in time and space in order to
describe atomically detailed interactions and correlated supra-
molecular motions, both of which contribute to materials
assembly and function.
One class of nanomaterials that show promise as scaffolds for

molecular recognition and catalysis8 are peptoid nanosheets,
solid bilayers that assemble from sequence-defined peptoid
polymers9 (positional isomers of peptides) due to a mechanical
protocol that acts on many peptoids collectively (Figure
1).10−13 Exposed to an air−water interface, amphiphilic peptoid
polymers first adsorb from solution onto the interface, forming
a structured monolayer. Subsequently compressing the
monolayer past a certain pressure induces irreversible collapse
into bilayer nanosheets 2.9 nm thick and up to 100 μm wide.
Such a process is determined by mechanisms operating at
multiple length scales: electrostatic interactions at the angstrom
scale link side chains on neighboring polymers; amphiphilic
patterning at the 1 nm scale allows for adsorption to the air−
water interface; the motion of polymers on scales up to their
full 10 nm length determines whether in-plane ordering occurs;

and nanosheets can extend to scales of order 100 μm. The
associated time scales range from picoseconds, for atomic and
molecular fluctuations, to the seconds or minutes on which
nanosheets are produced.
Developing a detailed, real-space picture of such a multiscale

process requires a modeling approach able to account for
mechanisms operating on a broad range of length and time
scales. Studies of macromolecules such as nucleic acids and
proteins have shown that coarse-grained modeling can, in
principle, span scales efficiently, by representing explicitly only
the most important molecular degrees of freedom, and
representing implicitly other degrees of freedom via “effective”
interactions.14−24 However, reducing the number of degrees of
freedom unavoidably discards information, so the resulting
coarse-grained model cannot capture all aspects of the
underlying all-atom system. For example, it has been shown
generally that coarse-grained models parametrized to reproduce
all-atom pair distribution functions cannot correctly reproduce
thermodynamic properties such as energy and pressure, and
vice versa.25−27

To mitigate this representability problem,25−27 careful choices
must be made in the two key aspects of a coarse-graining
scheme: the choice of which degrees of freedom (or “sites”) to
be retained, and how interactions between sites should be
parametrized. Most work has focused on the latter, resulting in
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the development of rigorous interaction-parametrization
schemes to target particular features (typically distribution
functions, forces, or energies) of related all-atom simula-
tions28−32 or to minimize the relative entropy between coarse-
grained and all-atom ensembles.33−36

Fewer authors have investigated the choice of which degrees
of freedom to retain. Coarse-grained models based on rigorous
parametrization schemes have employed isotropic (spherically
symmetric) interactions, for which these schemes are most
tractable. However, it has been shown that the accuracy of
isotropic coarse-grained models declines as the underlying all-
atom system becomes more anisotropic, due to the fact that
more information is lost when averaging spherically over
anisotropic interactions than over isotropic ones.37,38

One way to improve the accuracy of a coarse-grained model
with spherically symmetric sites is to increase the number of
sites, a strategy often employed in protein modeling.39−41 For
example, by including between 3 and 8 sites per amino acid
residue, the PRIMO protein model41 can estimate all-atom
configurations with such accuracy that all-atom configurations
can be passed between PRIMO and atomistic models with 0.1
Å resolution,42 allowing the model to seamlessly interface with
all-atom force fields in multiscale simulations.43 While such an
approach clearly represents a protein in great detail, the large
number of degrees of freedom represented means that
simulations are only one order of magnitude faster than all-
atom simulations.41

Here, we demonstrate an alternative strategy for combining
accuracy and efficiency within coarse-grained modeling: retain
only a minimal number of coarse-grained sites (two per
monomer) but include fluctuating orientational degrees of

freedom for each site. Coarse-grained modelers have recognized
the importance of anisotropic interactions in biomolecules,
having incorporated directional nonbonded interactions into
models for proteins,44−51 DNA,52−55 and lipids.56 Efforts in
protein modeling have focused on capturing the directionality
of backbone hydrogen bonding (absent in peptoids) by
approximating the dipole−dipole interaction between peptide
groups using only the positions of nearby alpha carbons on the
backbone.45−50 In addition, at least one model has accounted
for the anisotropic shape of protein side chains by using
ellipsoidal (but energetically isotropic) side chain sites,44 and
one model has accounted for dipole−dipole interactions
between polar side chains.51 Coarse-grained DNA models
have focused more on directional nonbonded interactions,
including separate base-pairing, base-stacking, and cross-
stacking interactions depending on the relative orientation of
interacting nucleobases.52−55

Motivated by the success of those strategies, and recognizing
the importance of directional interactions and torsional
conformations in peptoids, we created a model with directional
interactions depending on independently f luctuating orienta-
tions, associating each site with both a position and an
independent symmetry axis. As far as we know, the only
previous uses of orientational degrees of freedom in coarse-
grained biomolecule models are the protein model of Spiga,
Alemani, Degiacomi, Cascella, and Dal Peraro, which includes
rotating electric dipoles in polar side chains,51 and the DNA
model of Morriss-Andrews, Rottler, and Plotkin, which includes
one soft orientational degree of freedom per base.53 Relative to
an isotropic model, including a symmetry axis increases the
number of degrees of freedom per site from three to five but
improves the accuracy of our model in two ways. First, it allows
us to parametrize bonded and nonbonded interactions that
incorporate atomic-level details like covalent-bond dihedral
angle distributions and electric dipole interactions. Second, it
allows us to estimate, or backmap, all-atom configurations with
sufficient accuracy to perform detailed scattering calculations
and interface with all-atom simulations.
We plan to use our model to investigate the dynamic, large-

scale processes in the nanosheet production cycle (Figure 1):
adsorption of solvated peptoid polymers to the air−water
interface, ordering of the adsorbed monolayer, and collapse into
a free-floating bilayer. In the current study, we establish that our
model reproduces all known structural features of the
equilibrium states involved in this production cycle, features
measured by solution X-ray scattering of solvated polymers,
grazing-incidence X-ray scattering of monolayers, and oriented
X-ray scattering of stacks of bilayer nanosheets. In so doing, we
provide a microscopic, real-space interpretation of these
Fourier-space features. In addition, we show how our approach
can interface with all-atom simulations with an accuracy
comparable to computationally more demanding models that
possess more degrees of freedom, laying the groundwork for
efficient multiscale simulations57−60 of sequence-specific
polymers that communicate in both directions across scales.

■ MODEL AND METHODS
In this paper, we focus on the block-charge peptoid illustrated
in Figure 2a−c, although we note that our coarse-graining
scheme is transferable to different peptoid chemistries and is
generalizable to proteins61. “Block-n” peptoids are (poly)-
peptoids of the form ((Nae−Npe)n/4−(Nce−Npe)n/4), built
from two equal-length blocks, each consisting of nonpolar N-

Figure 1. (a) Nanosheet production cycle. Exposed to an air−water
interface, amphiphilic peptoid polymers adsorb from solution onto the
air−water interface. Compressing the monolayer induces irreversible
collapse into free-floating bilayer nanosheets. Decompressing the
interface completes the cycle, allowing additional peptoids to adsorb.
(b) Experimental plot of the surface pressure and surface area of the
monolayer during one production cycle, illustrating the large hysteresis
associated with the irreversible formation of nanosheets.10−13 (c) Nile
red fluorescence micrograph of a solution of free-floating nanosheets.8
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(2-phenylethyl)glycine monomers alternating with charged
monomers. The first block contains positively charged N-(2-
aminoethyl)glycine monomers, and the second block contains
negatively charged N-(2-carboxyethyl)glycine monomers. We
investigated “block-n” peptoids of several lengths but present
results primarily for block-28, for which the most extensive set
of experimental data exists.
As illustrated in Figure 2b, we construct the positions of our

coarse-grained model in the usual way, associating groups of
atoms with coarse-grained sites and linking those sites with
virtual or “coarse-grained” bonds.14−24 We assign two coarse-

grained sites per monomer, one for the backbone and one for
the side chain. The resulting bonded network is a linear chain
of n backbone sites, each branched with one side chain site, plus
(optionally) an additional backbone site representing the
relatively bulky carboxy-terminus. We associate the backbone
sites with the backbone atoms of each monomer plus the first
methylene bridge of the side chain. We associate the
phenylethyl, aminoethyl, and carboxyethyl side chain sites
with the remaining atoms of the side chains. With these
associations, the backbone maps to the molecule N-

Figure 2. (a) Chemical diagram of a 28-monomer “block-28” peptoid polymer (Nae-Npe)7−(Nce-Npe)7. Blue and red parts of the diagram denote
positively and negatively charged polar side chains, yellow parts denote nonpolar side chains, and grey parts denote the backbone. (b) Ball-and-stick
representation of our coarse-grained peptoid model, taken from a single strand equilibrated within a monolayer. Blue, red, and yellow balls denote
positions of the positively charged side chain sites, grey balls denote positions of the backbone sites, and arrows denote the symmetry axis of each
site. (c) All-atom representation backmapped from the positions and (superposed) orientations of the coarse-grained sites. Atoms are colored
according to the site with which they are associated. (d-e) Close-up view showing two monomers in the aminoethyl block in (d) coarse-grained and
(e) all-atom representations. (f-g) Close-up view showing two monomers in the carboxyethyl bock in (f) coarse-grained and (g) all-atom
representations.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/ct5010559
J. Chem. Theory Comput. 2015, 11, 303−315

305

http://dx.doi.org/10.1021/ct5010559


methylacetamide and the side chain sites map to the “side chain
analogs”62 toluene, methylammonium, and acetate.
Our model distinguishes itself from previous coarse-grained

models by defining each site Xi = {ri⃗,n̂i} by both a position ri⃗
and a director n ̂i (arrows in Figure 2b) representing the
dominant symmetry axis of the atoms associated with the site.
For the backbone sites, defining ri⃗ by the backbone N location
and n̂i by the first side chain (N−Cβ) bond allows us to capture
the softest covalent interactions (bond torsions) with effective
interactions that account for the accumulated torsion along the
backbone and side chain branches of the covalent network. For
the phenylethyl side chain site, defining ri⃗ by the center of the
aromatic ring and n ̂i by its normal allows us to employ
anisotropic nonbonded interactions that respect the aromatic
ring’s approximately axial symmetry. For the aminoethyl and
carboxyethyl side chains, defining ri⃗ by the center of mass of the
associated atoms and n ̂i by the direction of the central bond
(Cγ−Namino or Cγ−Ccarboxy) aligns the site with the dipole
moment of the associated atoms and leaves only hydrogens and
the carboxy oxygens off the symmetry axis, allowing us to
employ anisotropic nonbonded interactions capturing the
dominant (monopolar and dipolar) electrostatic interactions
among charged groups.
The principle of coarse-grained modeling lies in replacing a

potentially exact many-body effective interaction between
coarse-grained sites with a sum of few-body interactions that
can be efficiently incorporated into molecular simulations.14−24

We followed this principle by decomposing our effective
interaction into bonded and nonbonded terms, as convention-
ally done, plus height-dependent solvation terms accounting for
the preference of some molecular groups (such as the aromatic
groups) to adsorb to the air−water interface. Height-dependent
solvation terms are not common in coarse-grained models;
instead, coarse-grained models used to study interfaces (such as
the MARTINI lipid model63) typically employ explicit coarse-
grained water particles. A height-dependent solvation inter-
action has been used previously to model surfactant adsorption
onto a solid interface.64 In future work, we plan to allow the
shape of the air−water interface to fluctuate, including a fourth
potential energy term to couple these fluctuations to the surface
tension. We expect that including these fluctuations will be
necessary to allow investigation of the mechanism by which the
monolayer collapses into a bilayer.
We parametrized the potential energy function in two stages.

First, we applied a “bottom-up” parametrization, performing

direct Boltzmann inversion65 to fit a set of effective potentials
to all-atom potentials of mean force,

∫ ∏ δ= − − ̃ −
α α

α α
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where {Ri
α} is an orthogonal set of generalized coordinates

describing a particular bonded, nonbonded, or solvation
interaction Uα; dr are a set of atomic coordinates including
water atoms; R̃i

α(r) is the mapping from atomic coordinates to
generalized coordinates; and u(r) is an all-atom force field. We
calculated the integral in eq 3 by conducting all-atom molecular
dynamics simulations of the smallest molecular systems
adequately constraining Uα.
Our use of effective potentials Uα({Ri

α}) depending on more
than one variable is not typical among coarse-grained models.
Typically, coarse-grained models built from isotropic sites use
single-variable effective potentials analogous to those found in
all-atom force fields: bonded interactions summed to depend
separately on bond lengths, bond angles, and dihedral angles,
and spherically symmetric nonbonded interactions depending
only on radial separations. Since all-atom distribution functions
typically do not factorize with respect to these variables, direct
Boltzmann inversion would not be expected to produce
accurate effective potentials. Iterative fitting procedures like
iterative Boltzmann inversion,66 the multiscale coarse-graining
method,28−31 and the relative entropy method33−36 are
typically used instead. These methods use a series of coarse-
grained simulations to converge to an optimized coarse-grained
model. Their success relies on the ability of single-variable
effective potentials to collectively yield accurate many-body
distribution functions, despite the fact that these distribution
functions do not factorize into a form commensurate with the
single-variable terms of the potential energy function.
Figure 3 illustrates our approach for the bonded interaction

between backbone and side chain sites, contrasting our
approach with a typical approach for an isotropic coarse-
grained model. Neglecting dihedral terms for simplicity, a
typical coarse-grained model would write the interaction as a
sum of terms each depending on only one geometric parameter
(see Figure 3a),

θ θ θ θ| | = | | + +U r U r U U({ , , }) ( ) ( ) ( )rsc
1 2

1
1

2
2 (2)

Figure 3a shows the minimal molecule needed to converge the
potentials of eq 2: a dimer with three backbone nitrogens

Figure 3. (a) Snapshot of a minimal peptoid dimer with three backbone nitrogens and one phenethylamine side chain, overlaid with virtual bonds
between coarse-grained sites and an arrow denoting the orientation of the central backbone site. (b) Two-dimensional potential of mean force for
two variables that would be treated separately in a typical coarse-grained model. (c) Two-dimensional potential of mean force for the variables
treated collectively in our model to describe the position of the side chain site relative to the position and orientation of the backbone site. (d)
Snapshot of the isolated peptoid monomer used to parametrize the side chain bonded interaction. (e) Coarse-grained potential of mean force for the
relative position of the side chain site, parametrized to match the (f) all-atom potential of mean force, which agrees well with the analogous potential
of mean force for the dimer (panel c).
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(three backbone sites) and one bulky side chain (one side chain
site) branched from the central nitrogen. As shown in Figure
3b, the two-dimensional potential of mean force depending on
θ1 and |r| does not factorize into θ1 and |r| terms: the basin of
attraction at large |r| (corresponding to an extended, trans side
chain) is more narrowly distributed in θ than the basin
attraction at small |r| (corresponding to a contracted, cis side
chain). Thus, one would not expect direct Boltzmann inversion
of single-variable effective interactions to yield an accurate
model. Instead, one would rely on an iterative procedure to
converge targeted features of the model with those of the all-
atom system. These procedures would rely on collective effects

from other interactions, such as a long-range nonbonded
interaction between the side chain site and the terminal
backbone sites, to converge the model.
In our model, we write the bonded side chain interaction as a

multiple-variable function that depends on the position and
orientation of the bonded side chain and backbone sites but
does not depend on positions of neighboring backbone sites.
Considering only the side chain site’s position for simplicity
(ignoring terms introduced to control the side chain site’s
orientation), the interaction has the form

Figure 4. (a) Schematic illustrating the effective interactions of the model, labeled by the effective interaction functions defined in eqs 4−11. (b−k)
Effect of fine-tuning four of the 115 parameters defining these functions. (b-c) Changing the length and energy scale of the phenethyl−phenethyl
interaction from 5.6 Å and 2 kcal/mol to 6.2 Å and 3 kcal/mol resulted in (b) a shift in the interaction potential (shown here for parallel sites),
greater agreement between simulated and experimental X-ray scattering spectra (see Supporting Information Methods), and (c) greater agreement
of pair distribution functions for coarse-grained and all-atom simulations of peptoid bilayers (shown here for phenethyl side chain sites in the same
bilayer leaf but different peptoid chains). (d-e) Changing the hard-core radius of the backbone sites (as shown in d) resulted in greater agreement
between simulated and experimental X-ray scattering spectra (see Supporting Information Methods) and (e) greater agreement of pair distribution
functions for coarse-grained and all-atom simulations (shown here for backbone sites in the same bilayer leaf but different peptoid chains). (f−k)
Adjusting the parameter J11 in the side chain bonded interaction for aminoethyl side chains shifted the most favored configuration from the (d) cis
configuration favored by isolated all-atom aminoethyl monomers to the (e) trans configuration favored by aminoethyl monomers in all-atom bilayers.
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where r∥ and r⊥ are the components of the side chain separation
parallel and perpendicular to the backbone director (Figure 3a)
and the other parameters are constants. The first term in eq 3
describes an arc traced out by the side chain site as the middle
of three side chain hydrocarbon bonds twists, and the second
term in eq 3 describes the bimodal distribution of dihedral
angles with minima corresponding to cis and trans config-
urations (Figure 3c). Dihedral rotation of the third hydro-
carbon bond does not affect the side chain site’s position
(center of mass of the aromatic ring), and we model the first
hydrocarbon bond as freely rotatable, motivated by the
relatively weak dihedral interaction in our reference all-atom
force field.67 Thus, a simple pairwise interaction between
oriented backbone and side chain sites captures the dominant
atomic-level energetics of the underlying all-atom system.
(Modeling the weak dihedral angle dependence for the first
hydrocarbon bond could be achieved by using fully oriented
sites61 rather than sites with only one symmetry axis.)
Since the bonded interaction (eq 3) depends only on the

position and orientation of the backbone and side chain sites in
a single monomer, we parametrized the interaction by matching
potentials of mean force (e.g., Figure 3e) to all-atom potentials
of mean force (e.g., Figure 3f) for an isolated monomer
dissolved in water (Figure 3d), using a CHARMM-based
peptoid force field developed in our lab.67,68 Comparing Figure
3f to Figure 3c shows that the all-atom potential of mean force
for the monomer agrees well with the same potential of mean
force for the trimer, justifying our use of the monomer to
constrain the side chain bonded interaction.
We parametrized the remaining effective interactions using a

similar Boltzmann inversion procedure. Figure 4a illustrates the
eight types of effective interactions, and their functional forms
are written below in eqs 4−11. Equation 4 is the backbone
bonded interaction Ubb among three adjacent backbone sites,
which uses the same coefficients regardless of monomer type.
Equation 5 is the side chain bonded interaction between
backbone and phenethyl side chain sites and eq 6 is the side
chain bonded interaction between backbone and charged side
chain sites, which uses different coefficients for aminoethyl and
carboxyethyl side chains. Equations 5 and 6 have different
functional forms because the symmetry axis of the side chain
sites are perpendicular and parallel to the side chain’s
hydrocarbon chain for phenethyl and charged side chains,
respectively. Equation 7 is the nonbonded interaction between
phenethyl side chain sites; eq 8 is the nonbonded interaction
between charged side chain sites (with charges and geometric
parameters depending on the identities of the two involved
sites); eq 9 is the nonbonded interaction between backbone
and any other site (with hard-core radii depending on the
identities of the sites); and eq 10 is the interaction between
nonbonded phenethyl and side chain sites (also with hard-core
radii depending on the identities of the sites). Equation 11 is
the one-body, height-dependent solvation interaction, with
coefficients depending on the monomer type.
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In eq 7 the expressions entering the nonbonded phenethyl−
phenethyl interaction are
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In eq 8, the expressions entering the nonbonded charged−
charged interaction are
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Sections 1−3 of the Supporting Information Methods discuss
in detail the Boltzmann inversion procedures we used to
parametrize each term. We parametrized bonded side chain
interactions (eqs 5 and 6) by inverting potentials of mean force
from all-atom simulations of isolated monomers dissolved in
water using the MF-TOID all-atom peptoid force field,67 as
discussed above for eq 3 but including the dependence on the
side chain sites’ orientations. We used MF-TOID simulations of
a peptoid dimer with three backbone nitrogens to invert the
backbone bonded interaction (eq 4), which includes both two-
and three-body terms among neighboring backbone sites.
We parametrized the nonbonded interactions by matching

orientation-dependent potentials of mean force to published
all-atom potentials of mean force for small-molecule analogs of
the coarse-grained sites.69,70 We used a Gay−Berne potential to
model the nonbonded interaction between phenethyl side
chain sites,71−74 targeting potentials of mean force for
toluene,69 and we used an anisotropic electrostatic potential

(hard spheres with off-center point charges) with an ad-hoc
solvent-mediated term to model the interaction between
oppositely charged aminoethyl and carboxyethyl side chain
sites, targeting potentials of mean force for methylammonium
and acetate.70 We used the same electrostatic parameters to
model the interactions between equally charged side chain sites.
(As far as we know, no one has conducted all-atom simulations
for equally charged molecules like methylammonium and
acetate that are analogous to our charged side chains.) For
simplicity, we let the remaining, weaker interactions (back-
bone−side chain, phenethyl−aminoethyl, and phenethyl−
carboxyethyl) be purely repulsive, using hard-core repulsions
with conservatively small radii to prevent erroneous exclusions
of viable all-atom configurations. We let the hard-core radii of
the charged sites be equal to the hard-core radii used in the
interaction between charged sites, we let the hard-core radius of
the phenethyl side chain site be equal to the shorter of the
principle radii for the Gay−Berne potential, and we initially set
the hard-core radii of the backbone site equal to a
conservatively small value, the van der Waals radius of the
central nitrogen atom.
Finally, we parametrized a height-dependent solvation free

energy for each type of site, targeting experimental bulk
solvation free energies75−77 and height-dependent all-atom
potentials of mean force78−80 for the molecular analogs of each
site. Although the use of molecular analog solvation free
energies by themselves to predict macromolecule free energies
has been criticized because it neglects solvent exclusion and
“self-solvation”,81 we explicitly accounted for those effects by
including both solvation interactions and solvent-mediated
nonbonded interactions.
In total, our model has 115 parameters, 114 of which were

parametrized to match experimental free energies or all-atom
potentials of mean force for small-molecule analogs, and one of
which (the backbone site hard-core radius) was initially
assigned a conservatively small value.
In a second stage of parametrization, we fine-tuned four of

the 115 parameters, including the one that was not para-
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metrized from the bottom up, to improve the agreement with
experiments and all-atom simulations82 of peptoid bilayers. We
fine-tuned these parameters to simultaneously improve the
agreement with (1) experimental X-ray scattering spectra,
which showed a somewhat sharper dominant peak at a
somewhat smaller wavenumber, (2) all-atom pair distribution
functions, some of which showed peaks at larger distances, and
(3) distributions for the position and orientation of the
aminoethyl side chains, which were shifted more toward the
trans configuration.
Figure 4 highlights the effect of fine-tuning the four

parameters, and a detailed discussion appears in Section 7 of
the Supporting Information Methods. As shown in Figure 4b-c,
increasing the size (by 11%) and interaction strength (by 50%)
of the phenethyl side chain sites (the dominant nonbonded
interaction in the system) improved the agreement of
phenethyl−phenethyl pair distribution functions between all-
atom and course-grained simulations. As shown in Figure 4d-e,
increasing the hard-core radius of the backbone sites from the
conservatively small nitrogen van der Waals radius improved
the agreement of backbone−backbone pair distribution
functions. We chose particular values of the phenethyl size
and the backbone length scale from a two-dimensional grid to
optimize the agreement with the experimental X-ray scattering
peak height and location, and we found that our choice was also
among the best choices for improving the agreement with all-
atom distribution functions. We did not adjust the parameters
controlling the shape of the phenethyl-phenethyl side chain
interaction, because we found that orientational pair distribu-
tion functions (see Supporting Information Methods) agreed
well with the all-atom simulations throughout the range of
phenethyl sizes that we investigated.
Finally, as shown in Figure 4f−k, we found that it was

necessary to adjust the side chain bonded interaction for the
phenethyl side chains so that the side chains would
predominantly adopt a trans configuration, as in all-atom
simulations of peptoid bilayers (Figure 4g), rather than a cis
configuration, as in all-atom simulations of isolated monomers
(Figure 4f). Adjusting the linear coefficient J11 in the fourth-
order polynomial describing the bimodal cis−trans transition
(see eq 6) resulted in free energies (Figure 4k) that agreed with
the all-atom bilayer (Figure 4j) more closely than the isolated
all-atom monomer (Figure 4h). The bonded interactions for
the carboxyethyl and phenethyl side chains did not need such
an adjustment, because their all-atom free energies are very
similar for bilayers and isolated monomers.
We call our model the Molecular Foundry Coarse-grained

Model for Peptoids (MF-CG-TOID). Source code in C for
initializing, simulating, and analyzing the model are available as
Supporting Information.
We expect that combining our current model with careful

treatment of fluctuations of the air−water interface will allow us
to investigate the large-scale dynamic processes of adsorption
and collapse. To gain confidence that these studies will connect
directly to experiment, we first establish in the current paper
that our model captures the structural properties of the three
metastable states relevant for the nanosheet production cycle
(Figure 1): solvated polymers, adsorbed monolayers, and free-
floating bilayers. To calculate these properties, we performed
Monte Carlo simulations with periodic boundary conditions in
the appropriate ensembles, as detailed in Sections 4 and 5 of
the Supporting Information Methods. As discussed in Section 6
of the Supporting Information Methods, we compared

simulated and experimental structures by calculating scattering
spectra on all-atom configurations generated from our coarse-
grained simulations. Although all-atom scattering spectra have
been generated from other coarse-grained models,65,85,86

previous approaches have included energy minimization and
annealing steps to remove unphysical local configurations. We
believe that our work, using accurate all-atom configurations
generated by anisotropic coarse-grained sites, is the first
example of a coarse-grained model able to generate accurate
all-atom scattering spectra directly.

■ COMPARISON WITH EXPERIMENT
We start our exploration of the nanosheet production cycle
with a study of the equilibrium structure of solvated peptoids.
This structure presumably strongly influences the ability of
peptoids to adsorb to the air−water interface. Experimental X-
ray83 and neutron87,88 scattering has indicated that solvated
peptoids tend to collapse into single-chain globules, except for
highly charged peptoids that form extended conformations in

Figure 5. (a-b) Snapshots of a single solvated block-28 peptoid in (a)
coarse-grained and (b) backmapped all-atom representations. (c)
Kratky (main) and Guinier (inset) plots of the radially averaged X-ray
scattering spectrum I(q) for the solvated block-28 peptoid. The solid
curves are the fit to Guinier’s law, I(q) = I0 exp(−(qRg)

2/3). We
arbitrarily rescale I(q) by I0. (d) Radius of gyration Rg (from the fit to
Guinier’s law) vs number of monomers for block-n peptoids. The red
line is a fit to the scaling expected for spherical globules, restricting the
fit to n ≥ 16. For comparison, the blue points are experimental values
for 100-monomer peptoids with either alternating (top point) or
“protein-like” (bottom point) patterns of 80% methyl and 20%
carboxyethyl side chains,83 and the magenta points are experimental
values for globular proteins from ref 84. (e-f) Snapshots of the block-
28 peptoid exposed to a horizontal air−water interface. The atoms in b
and f are shown with twice their van der Waals radii to show the
exposed aromatic surfaces (yellow).
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low ionic strength solutions.88 Our model block peptoid
collapses into a single-chain globule when equilibrated in water
because of the strong attraction between aromatic rings in
phenylethyl side chains, as seen in experiments and simulations
of other synthetic polymers with suitably designed amphiphilic
patterns.89−94 Snapshots of the block-28 peptoid at the end of
the simulation (Figure 5a-b) show its roughly spherical shape,
with most of the yellow aromatic side chains sequestered in the
core. The Gaussian peak in the main panel of Figure 5c
indicates a roughly spherical shape characterized by a radius of
gyration Rg. The dependence on n for n-monomer block
peptoids (Figure 5d) indicates that, for large peptoids, the
globule size grows with molecular weight as expected (red line)
for spherical globules; peptoids smaller than block-16 do not
pack as spherically. Comparing our simulated results with
experimental results for more weakly hydrophobic peptoids
consisting of 80% methyl and 20% carboxyethyl side chains83

(blue points in Figure 5b) suggests that the negatively charged
methyl/carboxy peptoids pack less tightly than the block
peptoids, likely due to repulsions between negative charges.
Instead, the agreement of the red scaling with the magenta data
points for globular proteins84 suggests that our 50% phenyl-
ethyl peptoids pack as tightly as globular proteins.
When our model peptoid is exposed to an air−water

interface, as in the snapshots of Figure 5e-f, part of the
hydrophobic core flattens out along the interface as the peptoid
strikes a balance between maintaining aromatic interactions
within its core, and exposing nonpolar groups to the air. The
persistence of the aromatic core may help explain why
experimental monolayer formation proceeds slower than
would be expected for a diffusion-limited process.13

The next stage of nanosheet production is the formation at
the air−water interface of structured peptoid monolayers, a
crucial intermediate between unassociated peptoids and
nanosheets.12,13 Figure 6 demonstrates that our coarse-grained
model captures the essential structural features of the

monolayer. We modeled the bulk monolayer by equilibrating
a periodic monolayer at fixed values of the surface pressure,13

including the experimental equilibrium surface pressure pS = 31
mN/m. We plan to use our model to explore the equilibrium
established between a peptoid solution and an air−water
interface; in the current work, we used the surface pressure as a
control parameter.
As shown in Figure 6a, our simulation box equilibrates as a

dense monolayer containing small voids near the terminii of
some of the peptoids. Nonpolar side chains (yellow) tend to
segregate away from these voids. Inspection of close-up images
such as Figure 6b reveals that peptoids tend to align parallel
with their neighbors, separated by a characteristic distance of
4.8 Å. The distance 4.8 Å appears as a peak in the radially
averaged X-ray spectrum (Figure 6c). Both the location and
amplitude of the peak agree well with the experimental peak at
4.6 Å obtained from grazing incidence X-ray scattering in ref
13. In the simulation, peptoids remain predominantly oriented
in the x direction, wrapping around the simulation box, so the
simulation sample is radially anisotropic. This anisotropy allows
us to separate the in-plane spectrum into x and y components,
helping to confirm that the dominant peak comes from
separations (predominantly in the y direction) between parallel
peptoids. The more isotropic halo arises primarily from
correlations between nonpolar side chains, which tend to
organize isotropically except for the constraints imposed by
their bonds to the backbones. Calculating the radial average
only for atoms within the nonpolar side chains (blue curve in
Figure 6c) illustrates that this contribution leads to the second
peak observed in the simulation, and may explain the peak seen
at the right-hand side of the experimental curve (black).
Focusing next on the final part of the nanosheet production

cycle, we show in Figure 7 that our model reproduces the key
structural features of the bilayer nanosheets themselves. We
modeled the interior of a large, free-floating nanosheet by
simulating a periodic bilayer at zero tension (Figure 7a). As

Figure 6. (a) Wide-angle and (b) close-up snapshots of a periodic monolayer of 48 block-28 peptoids simulated at the experimental equilibrium
surface pressures of 31 mN/m. The peptoids are stable at the air−water interface, filling most of the interface and exhibiting small voids near some
peptoid termini. Peptoids remain predominantly parallel to their neighbors, separated by a characteristic distance of 4.8 Å (red arrow in b). (c)
Comparison of the experimental grazing-incidence X-ray scattering13 (black) and simulated (red) radially averaged in-plane X-ray spectra show a
similar peak location and amplitude at 4.6 (experiment) and 4.8 (simulation) Å. The spectra are plotted on a log scale and normalized by the
amplitude Imax of the dominant peak, in order to allow quantitative comparison without knowing the incident X-ray intensity in experiments (varying
which would only shift the log plot up or down). (d) Two-dimensional in-plane spectrum of the radially anisotropic simulated monolayer confirms
that the dominant peak comes from correlations in the y direction.
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shown in Figure 7b-c, the bilayer stabilizes in a rectilinear
configuration, with parallel peptoids wrapping around the x
direction and seams of terminii running in the y direction. To
calculate X-ray scattering profiles that could be compared with
experimental ones, we placed two vertically separated bilayers
in a periodic box and allowed them to stack together by
allowing the attractive forces between the bilayers to drive out

intervening solvent (see Section 6 of the Supporting
Information Methods). As shown in Figure 7e, the bilayers
equilibrated at a lamellar spacing of 30 Å. Then, we mimicked
the experiments of ref 7 by performing X-ray scattering in and
out of the bilayer plane. (Isolated nanosheets showed very little
difference in their in-plane spectra.)

Figure 7. (a) All-atom representation of one periodic cell of a bilayer nanosheet at zero tension (96 block-28 peptoids). (b-c) Wide-angle snapshots
looking down on the nanosheet, shown in (a) coarse-grained and (b) all-atom representations. The bilayer is stable in a rectilinear configuration,
with peptoids running in the x direction and seams of terminii running in the y direction. (d) Close-up snapshots in the coarse-grained
representation illustrate the typical 4.5 Å spacing between parallel peptoid backbones in each leaf of the bilayer. (e) We used a periodic cell of two
stacked bilayers to calculate the in-plane and out-of-plane X-ray spectra, in order to compare to those obtained experimentally13 from stacked
bilayers. (f) Two-dimensional simulated in-plane X-ray spectrum reveals a dominant peak in the y direction, corresponding to a typical spacing of 4.5
Å between parallel peptoids. (g) The radially averaged in-plane spectrum agrees well with the experimental spectrum. (h) Experimental and
simulated transverse X-ray spectra exhibit dominant peaks at 29 and 30 Å, respectively, corresponding to the lamellar spacing between stacked
nanosheets, as well as peaks at 5.6 and 5.0 Å, respectively, whose origin is more subtle.13 The stacking peaks are larger in simulation due the perfect
stacking in the periodic z direction.
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As shown in Figure 7f, the in-plane spectrum reveals a
dominant peak in the y direction corresponding to a separation
of 4.5 Å between neighboring peptoids. The distance is
somewhat shorter than in the monolayer, probably due to the
additional attractive interactions of the bilayer’s second leaf, and
the peak is more confined to the y direction due to the bilayer’s
ability to stabilize a rectilinear configuration. The radially
averaged in-plane spectrum agrees very well with experiment
(Figure 7g). The agreement is better than for the monolayer
because we fine-tuned four model parameters to match this
target.
The transverse spectrum in Figure 7h also agrees well with

experiment, though the amplitudes of the lamellar peak at 30 Å
and its two higher harmonics are larger in simulation due to the
perfect stacking in the z direction. As discussed in ref 13, the
dominant short-range peak at 5.0 Å (compared to 5.6 Å in the
experiments) arises from a subtle combination of many
contributions, so the agreement in its shape and location is a
good indicator of the quality of the coarse-grained model.

■ INTERFACING WITH ALL-ATOM SIMULATIONS
The results described above demonstrate the accuracy afforded
by our coarse-grained modeling scheme, which can be achieved
in a computationally efficient manner. Our coarse-grained
model is at least 104-fold faster than an all-atom calculation: the
model possesses 10 times fewer interaction sites per unit
volume (e.g., 57 coarse-grained sites versus 543 atoms for a
block-28 peptoid, not counting the water molecules necessary
for the all-atom simulation); it therefore requires 100 times
fewer calculations per unit time per unit volume; and it can be
propagated using a time step roughly 100 times larger than is
used for all-atom calculations (10−13 seconds versus 10−15

seconds; see Section 4 of the Supporting Information
Methods).
Furthermore, we are able to pass configurations between

coarse-grained and all-atom simulations so as to access the
efficiency of the coarse-grained representation and the high
resolution of the atomic-scale model. Such multiscale
simulation has been done by embedding small all-atom regions
of interest within coarse-grained simulations,43,95−99 by
performing replica-exchange simulations across scales,100−103

or by initializing all-atom simulations with coordinates
generated from coarse-grained simulations.104−106

To establish the feasibility of this approach for the present
model, we determined the compatibility of backmapped all-
atom configurations of our coarse-grained model with our
previously published CHARMM-based68 all-atom peptoid force
field, MFTOID.67 Following the approach used for the PRIMO
protein coarse-grained model,42 we calculated how far atoms
move when mapped “roundtrip” from an all-atom configuration
(AA) to our coarse-grained model (CG) and back to an all-
atom configuration (AA). Since the AA → CG mapping
reduces the number of degrees of freedom, and the
“backmapping” CG → AA is deterministic, atoms must move
during the AA → CG → AA roundtrip. Because multiscale
simulation schemes are based on either the AA → CG
mapping, the CG → AA backmapping, or both, these schemes
work best when the roundtrip distance moved is as small as
possible.
Using an all-atom bilayer nanosheet as a test case,82 we found

that the “roundtrip” root-mean-square displacement (RMSD)
per heavy atom is 0.291, 0.300, and 0.469 Å for Npe, Nae, and
Nce monomers, respectively. Table 1 compares these values to

those acquired from reconstructing protein test sets using two
coarse-grained protein models: SICHO/CA, which has two
isotropic sites per monomer and can generate all-atom
configurations using the Molecular Modeling Tools for
Structural Biology toolset,42,107 and PRIMO, an intermediate-
scale model designed specifically to interface directly with all-
atom simulations.42 Note that the excellent RMSD values for
the PRIMO model, on the order of 0.1 Å, are made possible by
using nearly as many coarse-grained sites as heavy atoms (e.g., 6
vs 9 for glutamic acid and 6 vs 11 for phenylalanine). Our
RMSD values lie intermediate between the two models,
demonstrating that considerable information that can be stored
in the orientations of our coarse-grained sites.
Ongoing work on a related protein model suggests that

storing the full orientation of each coarse-grained site (rather
than just the principal symmetry axis) may increase the
resolution of a coarse-grained model beyond the intermediate-
resolution model: mapping backbone heavy atoms from the
Protein Data Bank108 to the protein model and back again
yields an RMSD of 0.051 Å.61 Although using a full orientation
would only require increasing the number of degrees of
freedom per site from five to six, we chose not to do so for our
peptoid model because of the added complexity that would
introduce to the effective interaction parametrization.
The accuracy of our coarse-grained model, reflected both in

its ability to capture atomic-scale interactions and its ability to
generate all-atom configurations, relies on the use of anisotropic
coarse-grained sites. Although such anisotropy makes the
model roughly six times more costly to simulate than an
equivalent model comprising only simple isotropic interactions
of a similar range (see Section 4 of the Supporting
Information), it allows us to estimate all-atom configurations
with sufficient accuracy to perform accurate scattering
calculations and interface directly with all-atom simulations.
As discussed above, producing such configurations with all-
atom simulations would result in an approximately 104-fold
slowdown. Producing them with a high-resolution coarse-
grained model such as PRIMO, with three times as many sites
as our coarse-grained model, would result in at least a 9-fold
slowdown (due to a 3-fold increase in sites and 3-fold increase
in force calculations, plus a shorter time step due to stiffer
interactions).

■ CONCLUSION
We have shown that using a coarse-grained model with
anisotropic coarse-grained sites permits efficient and accurate
simulation of sequence-defined polymers. Using a minimal
number of coarse-grained sites but including an independently
fluctuating symmetry axis for each, we are able to efficiently
sample ensembles of coarse-grained configurations that map to

Table 1. Root Mean Square Displacement Per Heavy Atom
between Initial and Regenerated All-Atom Configurations
for Coarse-Grained Peptoid and Protein Models

Model Monomer NSites NHeavy atoms RMSD (Å)

SICHO/CA Phe 2 11 1.14942

SICHO/CA Glu 2 9 0.98442

PRIMO Phe 6 11 0.05942

PRIMO Glu 6 9 0.09842

MF-CG-TOID Npe 2 12 0.291
MF-CG-TOID Nae 2 7 0.300
MF-CG-TOID Nce 2 9 0.469
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detailed all-atom configurations with reasonable accuracy.
Although we fine-tuned four parameters to improve agreement
with the experimental in-plane X-ray spectrum for the bilayer,
other emergent features of the model (the transverse bilayer
spectrum and the in-plane monolayer spectrum) matched
experiment without fine-tuning. We suggest that future efforts
to optimize the accuracy of coarse-graining schemes should
consider the symmetry of coarse-grained sites as an important
variable.
We plan to use MF-CG-TOID to investigate the large-scale

dynamic processes involved in the peptoid nanosheet
production cycle, using our coarse-grained model both as a
stand-alone tool and as a key component of a multiscale
simulation protocol. We expect that MF-CG-TOID (aug-
mented by parametrization of the necessary side chains) may
also be useful in creating a new class of protein-mimetic
materials based on the precision assembly of sequence-defined
peptoid polymers, building on applications already developed in
therapeutics,109 diagnostics,110−112 transfection,113,114 and anti-
biotics.115
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(66) Reith, D.; Pütz, M.; Müller-Plathe, F. J. Comput. Chem. 2003, 24,
1624.
(67) Mirijanian, D. T.; Mannige, R. V.; Zuckermann, R. N.;
Whitelam, S. J. Comput. Chem. 2014, 35, 360.
(68) Mackerell, A. D.; Feig, M.; Brooks, C. L. J. Comput. Chem. 2004,
25, 1400.
(69) Chipot, C.; Jaffe, R.; Maigret, B.; Pearlman, D. A.; Kollman, P.
A. J. Am. Chem. Soc. 1996, 118, 11217.
(70) Zhu, S.; Elcock, A. H. J. Chem. Theory Comput. 2010, 6, 1293.
(71) Gay, J. G.; Berne, B. J. J. Chem. Phys. 1981, 74, 3316.
(72) Gupta, S.; Sediawan, W. B.; McLaughlin, E. Mol. Phys. 1988, 65,
961.
(73) Walsh, T. R. Mol. Phys. 2002, 100, 2867.
(74) Cacelli, I.; Cinacchi, G.; Prampolini, G.; Tani, A. J. Chem. Phys.
2004, 120, 3648.
(75) Wolfenden, R. Biochemistry 1978, 17, 201.
(76) Radzicka, A.; Wolfenden, R. Biochemistry 1988, 27, 1664.
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