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S1. Bonded interactions
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FIG. S1: (a) Chemical diagram, (b) coarse-grained represen-
tation, and (c) all-atom representation of a block-28 peptoid.

As shown in Fig. S1, our coarse-grained model con-
sists of chains of coarse-grained sites, each characterized
by both a position ~r and the direction n̂ of a principle
symmetry axis. Block-n peptoids consist of a chain of n
backbone sites Xback

i = (~r back
i , n̂back

i ), i = 0, ...n−1, each
linked to a single side chain site Xside

i = (~r side
i , n̂side

i ).
We included two types of bonded interactions, (1)

backbone bonded interactions that couple the coordi-
nates of backbone sites with the positions of neighbor-
ing backbone sites and (2) side chain bonded interac-
tions that couple the coordinates of backbone sites with
the coordinates of side chain sites. To create computa-
tionally efficient and accurate interaction potentials, we
first identified scalar coordinates that could efficiently de-
scribe bonded configurations, then parametrized interac-
tion potentials depending on these coordinates to repro-
duce potentials of mean force from all-atom simulations.

For the backbone interactions, we chose four scalar co-
ordinates built from the vectors between backbone sites

~r back
i,i+1 and the backbone site directors n̂back

i : |~r back
i,i+1 | de-

scribing the spacing between monomers, r̂back
i−1,i × n̂back

i

and n̂back
i ·r̂back

i,i+1 describing bending, and
(
r̂back
i−1,i × n̂back

i

)
·(

r̂back
i,i+1 × n̂back

i

)
describing twist, planarity, and direc-

tional persistence. This last coordinate is +1 for a pla-
nar backbone persisting in a uniform direction, −1 for
a planar backbone folding completely back on itself, 0
for a persistent backbone with a 90◦ twist, and 0 for
a backbone with a 90◦ bend out of plane. For compu-
tational efficiency, it can be written in terms of scalar
products as r̂back

i−1,i · r̂back
i,i+1 − (r̂back

i−1,i · n̂back
i )(r̂back

i,i+1 · n̂back
i ).

We parametrized the backbone interactions by match-
ing potentials of mean force (PMFs) calculated from un-
constrained all-atom molecular dynamics simulations of
a minimal peptoid dimer (Fig. S2 (a)) solvated in wa-
ter. We used MFTOID, a CHARMM-based peptoid force
field developed in our lab [1], for the all-atom simulations.
First, as shown in Fig. S2 (b), we constrained the spac-
ing and twist coordinates by fitting fourth-order poly-
nomials to the two one-dimensional PMFs depending on
|~r back
i,i+1 | and r̂back

i−1,i · r̂back
i,i+1 − (r̂back

i−1,i · n̂back
i )(r̂back

i,i+1 · n̂back
i ).

Then, we constrained the bend coordinates by fitting
harmonic functions for the deviations of r̂back

i−1,i × n̂back
i

and n̂back
i · r̂back

i,i+1 from central values depending lin-
early on |~r back

i,i+1 |. Fitting to the two two-dimensional
PMFs coupling r̂back

i−1,i × n̂back
i and n̂back

i · r̂back
i,i+1 with

|~r back
i,i+1 | yielded good agreement with those PMFs, as

shown in Fig. S2 (c). Without any additional fitting,
we found the resulting potential energy functions gave
PMFs in good agreement with the two two-dimensional
PMFs coupling r̂back

i−1,i × n̂back
i and n̂back

i · r̂back
i,i+1 with

F
(
r̂back
i−1,i · r̂back

i,i+1 − (r̂back
i−1,i · n̂back

i )(r̂back
i,i+1 · n̂back

i )
)

(Fig. S2
(d)). We arrived at a final interaction potential for an
N -mer with the form

Uback =
N−1∑
i=1

4∑
j=0

K1j |~r back
i,i+1 |j +

N−1∑
i=2

4∑
j=0

K2j

(
r̂back
i−1,i · r̂back

i,i+1 − (r̂back
i−1,i · n̂back

i )(r̂back
i,i+1 · n̂back

i )
)j

+
N∑
i=2

kl

(
r̂back
i−1,i · n̂back

i −
|~r back
i,i−1 | − r0l

sl

)2

+
N−1∑
i=1

kr

(
r̂back
i,i+1 · n̂back

i −
|~r back
i,i+1 | − r0r

sr

)2

.

(S1)

The best-fit interaction parameters are listed in Table SI. For the side chain interactions, we identified four scalar
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FIG. S2: (a) Molecular model used to parametrize the backbone bonded interactions. We parametrized the interactions by
fitting to potentials of mean force calculated from solvated all-atom simulations of the molecular model. (b) First, we fit fourth-
order polynomials to potentials of mean force for the spacing coordinate, |~r back

i,i+1 |, and the twist coordinate, r̂back
i−1,i · r̂back

i,i+1−(r̂back
i−1,i ·

n̂back
i )(r̂back

i,i+1 · n̂back
i ). (c) Then, to constrain the bend coordinates, r̂back

i−1,i × n̂back
i and n̂back

i · r̂back
i,i+1, we fit harmonic potentials

of the form given in the last two terms of Eq. S1 to two-dimensional potentials of mean force involving the bend and spacing
coordinates. (d) Without any additional fitting, we found that calculated two-dimensional potentials of mean force involving
the bend and twist coordinates matched those of the all-atom simulations.
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1 2

all-atom fit full model

-1 0 1-1 0 1-1 0 1
nk nk nk

r
k

(Å
)

r? (Å)
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FIG. S3: (a) Molecular models (primary amines) used to paramerize the side chain bonded interactions. We parametrized the
interactions by matching potentials of mean force calculated from unconstrained all-atom molecular dynamics simulations of
the molecular models. First, we fit two-dimensional PMFs relating the positional coordinates r‖ and r⊥ (panel b). Second,
subtracting the integrated effect of the first fitting, we fit two-dimensional PMFs relating r‖ and n‖ (panel c). Third, subtracting
the integrated effect of the first and second fitting, we fit two-dimensional PMFs relating ~r · n̂ and n‖ (panel d). Finally, we
numerically computed the PMFs for the full model (columns 3, 6, and 9 of panels b-d), confirming that they agreed well with
the all-atom PMFs of columns 1, 4, and 7.
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K10 13595.3 kcal/mol K20 2.36497 kcal/mol
K11 -15881.3 kcal/mol/Å K21 -3.87853 kcal/mol
K12 6946.51 kcal/mol/Å2 K22 0.463066 kcal/mol
K13 -1348.29 kcal/mol/Å3 K23 -3.33253 kcal/mol
K14 97.9797 kcal/mol/Å4 K24 5.34237 kcal/mol
kl 28.2832 kcal/mol kr 12.6891 kcal/mol
r0l 3.36096 r0r 1.51312
sl 1.95114 sr -4.10588

TABLE SI: Best-fit parameters for backbone bonded interac-
tions.

coordinates built from the backbone and side chain di-
rectors n̂back

i and n̂side
i and the vectors between backbone

and side chain sites, ~ri = ~r side
i − ~rback

i . Dropping the
monomer indices, the four coordinates are r‖ = n̂back · ~r,
r⊥ =

(
|~r|2 − r‖2

)1/2, n‖ = n̂back ·n̂side, and ~r·n̂ = ~r·n̂side.
We parametrized the side chain interactions for each side
chain type by matching PMFs calculated from uncon-
strained all-atom molecular dynamics simulations of the
corresponding primary amines (Fig. S3 (a)) solvated in
water, using the CHARMM force field [2]. Since the four
coordinates are highly interrelated, we fit and validated
the interaction parameters for each side chain type in
four steps, as shown in Fig. S3 (b-d). First, we fit the
two-dimensional PMF relating the positional coordinates
r‖ and r⊥ (Fig. S3 (b)). Noting that r‖ and r⊥ follow
a roughly circular orbit (Fig. S3 (b) as the atomic dihe-
dral angle ω1 (see Fig. S3 (a)) varies, we included a har-
monic term constraining r‖ and r⊥ to a circular orbit.
We added a fourth-order polynomial of arctan(r‖/r⊥) to
model the nonuniform preference for dihedral angles ω1.

Second, subtracting the integrated effect of the first fit-
ting, we fit the two-dimensional PMF relating r‖ and
n‖. For the aminoethyl and carboxylethyl side chains,
n̂side is parallel to the last carbon bond, so the coupling
between r‖ and n‖ depends mostly on the dihedral an-
gle ω1, and we could fit to the PMFs using a function
that varies harmonically in n‖ from a quadratic curve
in (n‖, r‖) space. For the phenethyl side chain, n̂side is
perpendicular to the last carbon bond, so the coupling
between r‖ and n‖ depends strongly on two atomic dihe-
dral angles, ω1 and ω2 (see Fig. S3 (a)). To accurately
match the two-dimensional PMF, we fit a bivariate poly-
nomial to the PMF, excluding odd terms in n‖ that would
destroy the reflection symmetry of n̂. Third, subtract-
ing the integrated effect of the first and second fitting,
we fit the two-dimensional PMF relating ~r · n̂ and n‖.
Again, the alignment of n̂side with the last carbon bond
for aminoethyl and carboxyethyl side chains meant that
we could fit their PMFs with a function that varies har-
monically in n‖ from a quadratic curve in (n‖, r‖) space.
For the phenethyl side chain, we again used a bivariate
polynomial to fit the complex dependence on ~r · n̂ and
n‖ as ω1 and ω2 vary. We included only terms with an
even total power to respect the reflection symmetry of n̂.
Fourth and finally, compiling all terms of the potential
energy function, we numerically computed the PMFs for
the full model (columns 3, 6, and 9 of Fig. S3 (b-d)) and
confirmed that they agreed well with the all-atom PMFs
(columns 1, 4, and 7 of Fig. S3 (b-d)). The full form for
the side chain interactions are

Uside = k1

((
(r⊥ − r⊥0)2 + (r‖ − r‖0)2

)1/2 − r0)2

+
4∑
j=0

J1j

(
arctan(r‖/r⊥)

)j
+

6∑
j=0

J20jr‖
j +

2∑
j=0

J22jn‖
2r‖

j + J240n‖
4

+
∑

j=0,2,4

J30jn‖
j +

∑
j=1,3

J31j(~r · n̂)n‖j +
∑
j=0,2

J32j(~r · n̂)2n‖j + J331(~r · n̂)3n‖ + J340(~r · n̂)4

(S2)

for the phenylethyl side chain and

Uside = k1

((
(r⊥ − r⊥0)2 + (r‖ − r‖0)2

)1/2 − r0)2

+
4∑
j=0

J1j

(
arctan(r‖/r⊥)

)j
+k2

(
n‖ −

2∑
j=0

r2jr‖
j)

)2

+ k3

(
~r · n̂−

2∑
j=0

n3jn‖
j)

)2 (S3)

for the aminoethyl and carboxyethyl side chains. The
parameters appear in Table SII.

Finally, we note that we coupled the side chain posi-
tional coordinates only with the backbone director, n̂back,
and not with the positions or orientations of neighboring

backbone sites. This allowed us to simply decompose the
bonded interactions into side chain and backbone terms,
as discussed above, and accounts for the flexibility ex-
pected in the single the bond between the backbone ni-
trogen and the first (Cβ) carbon of the side chain.
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phenethyl aminoethyl carboxyethyl phenethyl phenethyl aminoethyl carboxyethyl
k1 23.086 74.463 51.4346 J200 -1.88336 J300 2.84809 k2 12.8785 30.9392
r⊥0 0.343266 -0.891764 0.389628 J201 -2.02912 J302 -13.0286 r20 -0.0587984 -2.08987
r‖0 1.60786 0.999481 1.63953 J202 12.0487 J304 33.5248 r21 -1.024 1.19511
r0 3.44926 2.93893 1.98906 J203 -10.0584 J311 9.4368 r22 0.476617 -0.081282
J10 13.942 418.586* 193.754 J204 3.44353 J313 -45.2463 k3 50.2083 23.0679
J11 -82.0459 -1837.99* -937.961 J205 -0.536649 J320 -2.36074 n30 1.3901 1.94004
J12 186.411 2964.05 1671.22 J206 0.0315484 J322 24.2649 n31 1.55449 1.58382
J13 -164.93 -2079.92 -1279.85 J220 1.61338 J331 -6.30323 n32 -0.155606 -0.210233
J14 49.0435 537.819 355.337 J221 -4.38724 J340 0.711079

J222 1.24471
J240 0.663689

TABLE SII: Best-fit parameters for the side chain bonded interactions. *After fine-tuning, J10 and J11 for aminoethyl sites
were adjusted from 418.586 and -1837.99 to 424.643 and -1844.99 (see Section S7).
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FIG. S4: Solvation interaction energies Us(rz) for the four
coarse-grained sites, shifted with respect to their minimum
values.

S2. Solvation interactions

We modeled the solvation energy as a sum of a sig-
moidal term interpolating between bulk and vacuum en-
ergies and a Gaussian term modeling the affinity for sites
to the interface,

Us(rz) = Ubs − kBTr ln
(

1 +
exp(Ubs/kBTr)− 1

1 + exp(−4(rz − zint)/w)

)
+ Uint exp

(
−1

2

(
rz − zint

σint

)2
)
. (S4)

In Eq. S4 Tr = 300 K is room temperature, and we tuned
the other parameters to match experimental and/or all-
atom simulation data at room temperature, as listed in
Table SIII. We set the bulk solvation energy Ubs to
match experimental values for the analog molecules [3–
5] for the analog molecules. We tuned Uint, zint, and
σint to match free energy profiles F(z) calculated with
all-atom simulations of the analog molecules where such
profiles were available [6–8]. Since free energy profiles
for N-methylacetamide were not available, we used data
for the related molecule acetamide [6], which has a very
similar solvation free energy. We found that free-energy
profiles were relatively insensitive to the value of w, so

we fixed it at w = 1 Å. The best-fit parameters are listed
in Table SIII.

In fitting our interfacial parameters to all-atom free
energies, one choice would be to directly match Us(z) =
F(z). However, such an approach would assign an aver-
age interfacial free energy to an instantaneous, local po-
tential energy function. Since fluctuations in the position
of the air-water interface are large and likely couple to
fluctuations in the solute distribution functions, we did
not want to average over those fluctuations when con-
structing a potential energy function. Instead, we fixed
the interfacial parameters by minimizing (by eye, using
the published plots) the residual of the targeted equality
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F(z) = −kBT ln
(∫ ∞
−∞

dz′Pi(z′) exp (−Us(z − z′)/kBT )
)
, (S5)
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FIG. S5: (a) Potentials of mean force for parallel phenethyl
side chain sites, perpendicular phenethyl side chain sites, and
oppositely charged side chain sites. Parallel phenethyl po-
tentials of mean force were calculated by fixing site directors
to be parallel and perpendicular with respect to each other.
The potential of mean force between charged side chain sites
was unconstrained but calculated relative to the distance be-
tween charged sites at the aminoethyl N and the carboxyethyl
carboxyl C. (b) Two-dimensional potentials of mean force
for the oppositely charged side chain sites as a function of
the charged-charged separation and the separation between
methyl carbons.

where Pi(z) is the distribution function for the location
of the air-water interface. Assuming that Pi(z) is Gaus-
sian and that the instantaneous, local interface is sharp,
we get an error function for the average water density
profile. We independently constrained Pi(z) by fitting
the error function to the water density profile for each
all-atom simulation, each time finding excellent fits with
distribution widths between 1.5 and 1.7 Å.

Fig. S4 shows Us(rz) for the four coarse-grained sites,
shifted with respect to their minimum values. The

phenethyl side chain site shows the strongest affinity to
the air-water interface, serving to anchor peptoid mono-
layers to the interface. The backbone and carboxyethyl
side chain sites also contribute surface affinity. The rel-
ative locations of the minima help to stabilize the am-
phiphilic pattern, with phenethyl, backbone, and charged
sites localizing at increasing depths.

S3. Nonbonded interactions

Analyzing all-atom simulations of peptoid bilayers [12],
we found that interactions between phenethyl side chains
and between charged side chains are the dominant non-
bonded interactions. For computational efficiency, we
therefore treated all other nonbonded interactions as
isotropically hard-core repulsive with radii described be-
low.

Since the phenethyl side chain site would sample en-
vironments in both water and air (the latter in the case
of monolayers, with the site sampling mostly near its
free energy minimum at the interface), we modeled non-
bonded interactions between phenethyl side chain sites
in two ways, one representing a gas environment and one
representing a solvated environment.

Since we expected that interactions between the uniax-
ially symmetric π systems should dominate the aromatic-
aromatic interactions, we based both the gas and sol-
vated phenethyl-phenethyl interactions on the uniaxial
Gay-Berne potential [13], a generalized Lennard-Jones
potential that allows for separate variation of shape and
energy anisotropy. The Gay-Berne potential has previ-
ously been used to model benzene [14–16]. Here, we tar-
geted toluene, the molecular analog of the phenethyl side
chain site. The form of the potential is

UGB(Xi, Xj) = 4ε0ε(Xi, Xj ;κ′)

((
ξσ0

|rij | − σ0σ(Xi, Xj) + ξσ0

)12

−
(

ξσ0

|rij | − σ0σ(Xi, Xj) + ξσ0

)6
)
, (S6)

where

ε(Xi, Xj ;κ′) =
(

1− χ(κ)2 (~ni · ~nj)2
)−ν/2(

1− χ′(κ′)
2

(
r̂ij · ~ni + r̂ij · ~nj
1 + χ′(κ′)~ni · ~nj

+
r̂ij · ~ni − r̂ij · ~nj
1− χ′(κ′)~ni · ~nj

))µ
, (S7)

σ(Xi, Xj) =

(
1− χ(κ)

2

(
(r̂ij · ~ni + r̂ij · ~nj)2

1 + χ(κ)~ni · ~nj
+

(r̂ij · ~ni − r̂ij · ~nj)2

1− χ(κ)~ni · ~nj

))−1/2

, (S8)
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site analog Ubs (kcal/mol) Uint (kcal/mol) zint (Å) σint (Å)
backbone N-methylacetamide -10.1 [3]

acetamide -9.7 [3] -1.9 -0.5 0.6 [6]
Npe side chain toluene -0.76 [4] -3.6 1.2 1.6 [6]
Nae side chain methylammonium -71.3 [5]

ammonium -70 [9, 10] 0 -1.5 N/A [11]
Nce side chain acetate -79.9 [5] -1.5 -3.5 0.6 [7, 8]

TABLE SIII: Solvation parameters used in the model. The third columns lists experimental solvation free energies, along
with references. The last three columns list model parameters determined by matching all-atom simulation free energy profiles
published in the listed references. Parameters used in the model are listed in bold.

χ(κ) =
κ2 − 1
κ2 + 1

, (S9)

and

χ′(κ′) =
1− κ′1/µ

1 + κ′1/µ
. (S10)

As in Refs. [14–16] we also included a standard quadrupole electrostatic term in the gas environment,

Uq(Xi, Xj) =
3CQ2

4|~rij |5
(

1 + 2 (n̂i · n̂j)2 − 5
(

(r̂ij · n̂i)2 + (r̂ij · n̂j)2
)

−20 (r̂ij · n̂i) (r̂ij · n̂j) (n̂i · n̂j) + 35 (r̂ij · n̂i)2 (r̂ij · n̂j)2
)
,

(S11)

ε0 attractive energy scale 1.8 kcal/mol 2.7 kcal/mol
σ0 size 5.6 Å 6.2 Å
κ shape anisotropy 0.54
κ′ energy anisotropy 3.6
ξ potential shape parameter 0.5

TABLE SIV: Gay-Berne parameters for nonbonded interac-
tions between phenethyl side chain sites, adjusted to match
all-atom potentials of mean force for toluene [17]. The last
column lists fine-tuned values (see text).

where C = 332.06 (kcal/mol)Å/e2 is Coulomb’s constant
and Q = 0.6 eÅ2 is the quadrupole moment of toluene.
Quadrupole interactions have been shown to stabilize the
favored “slipped-parallel” configuration of benzene [17].
Although toluene also has a significant dipole interac-
tion, we expected that the anti-parallel configurations
favored by these interactions would be suppressed in the
phenethyl side chains by steric interactions between the
aromatic ring of one side chain and the hydrocarbon
chain of the other. We therefore did not attempt to
model dipole-dipole interactions of the phenethyl side
chain sites. This simplification allowed us to treat the
phenethyl side chain as a site with a single axis of sym-

metry, consistent with our coarse-graining scheme.

We set the parameters of the Gay-Berne potential by
matching potentials of mean force from all-atom simula-
tions of toluene in vacuum [17]. We fixed the exponents
µ = 1 and ν = −2 to maximize computational efficiency.
The remaining parameters are listed in Table SIV. We
obtained excellent agreement between coarse-grained and
atomistic potentials of mean force for both parallel and
perpendicular relative orientations, as demonstrated by
comparing the red and blue curves of Fig. S5 (a) with the
solid and long-dashed curves of Fig. 2 (b) of Ref. [17].
As discussed in section S7, we later fine-tuned two of the
parameters, the energy scale and the size, to improve the
agreement with experimental X-ray scattering and all-
atom simulations. The fine-tuned parameters appear in
the last column of Table SIV.

To model the phenethyl-phenethyl interaction in a
solvated environment, we included both a short-range
repulsive term penalizing voids smaller than a water
molecule and a longer-range solvent-separated attractive
term, each using the same shape anisotropy as the Gay-
Berne potential but with separately adjustable energy
anistropy:
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Usm(Xi, Xj) =


εrε(Xi, Xj ;κr)

(
1− 4

w2

(
|~rij | − σ0σ(Xi, Xj)−

w

2

)2
)
, |~rij | − σ0σ(Xi, Xj) < w

−εssε(Xi, Xj ;κss)

(
1− 4

w2

(
|~rij | − σ0σ(Xi, Xj)−

3w
2

)2
)
, w < |~rij | − σ0σ(Xi, Xj) < 2w

0, |~rij | − σ0σ(Xi, Xj) > 2w
(S12)

Because electrostatic interactions are strongly screened
in solution, we removed the quadrupole term in the sol-
vated environment. We interpolated the interaction po-
tential between the solvated and gas forms using a sig-

moidal function with the same middle (zint = 1.2 Å) and
width (σint = 1.6 Å) as the interfacial interaction for the
phenethyl side chain,

S(z) =
1

1 + exp (4(z − zint)/σint)
, (S13)

leading to the total interaction between phenethyl side chains

Up−p
nb (Xi, Xj) = UGB(Xi, Xj) +

1
2

(S(riz) + S(rjz))Usm(Xi, Xj) +
(

1− 1
2

(S(riz) + S(rjz))
)
Uq(Xi, Xj). (S14)

We set the parameters of the solvated potential by match-
ing potentials of mean force from all-atom simulations
of toluene in water [17]. The parameters are listed in
Table SV. We obtained excellent agreement between
coarse-grained and atomistic potentials of mean force for
both parallel and perpendicular relative orientations, as
demonstrated by comparing the red and blue curves of
Fig. S5 (b) with the solid and long-dashed curves of Fig. 3

(b) of Ref. [17]. As discussed in Section S7, we later fine-
tuned the size and overall energy scale of the phenethyl
side chain sites. The fine-tuned values appear in the last
column of Table SV.

We modeled interactions between the charged
aminoethyl and carboxyethl side chain sites as a combi-
nation of a hard-core repulsive interaction, an excluded
solvent interaction, and a screened Coulomb interaction,

Ucc(Xi, Xj) = Uex (|~rij | − (Ri +Rj)) + Uel (|(~rj + δj n̂j)− (~ri + δin̂i)|) , (S15)

where

Uex(∆r) =


∞, ∆r < 0

fsh(Ubsi + Ubsj)

(
1− 4

(
∆r − rsh/2

rsh

)2
)
, 0 < ∆r < rsh

0, ∆r > rsh,

(S16)

Uel(r) =
Cqiqj exp(−r/λD)

ε (r − (Ri − δi +Rj − δj)) r
, (S17)

and

ε(r) =
{
ε0 + (ε∞ − ε0)r/λε, r < λε
ε∞, r > λε.

(S18)

In these equations, Ri is the hard-core radius, Ubsi is the bulk solvation energy, C is Coulomb’s constant, and
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ε0 attractive energy scale 2 kcal/mol 3 kcal/mol
σ0 size 5.6 Å 6.2 Å
κ shape anisotropy 0.54
κ′ energy anisotropy 10
ξ potential well shape parameter 0.5
w solvation width 2.8 Å
εr solvent repulsive energy 1 kcal/mol 1.5 kcal/mol
κr repulsive energy anisotropy 25
εss solvent-separated attractive energy 0.3 kcal/mol 0.45 kcal/mol
κss solvent-separated energy anisotropy 4

TABLE SV: Parameters for nonbonded interaction between phenethyl side chain sites in a solvated environment, adjusted to
match all-atom free energies of toluene in water [17]. The last column represents adjusted parameters due to fine-tuning of the
size and overall energy scale of the phenethyl side chain sites (see text).

λD = (ε∞kBT/8πCcsalt) is the Debye length. We set
the sum of the aminoethyl and carboxylethyl hard-core
radii equal to 3.88 Å, equal to the center-of-mass sep-
aration for the minimum energy configuration in the
CHARMM forcefield [2]. We partitioned this distance
between aminoethyl (1.82 Å) and carboxyethyl (2.08 Å)
according to their mass-weighted radii of gyration. We
fixed the charge qi to be 1 for the aminoethyl side chain
site and −1 for the carboxyethyl side chain site. We con-
ducted most of our simulations at a salt concentration
of csalt = 0.2 M. The distance δi reflects the fact that
we place the center of the hard sphere at the center of
mass of the molecular analog, while we place the charge
at the atomic site associated with the greatest charge (N
for aminoethyl and carboxyl C for carboxyethyl), allow-
ing for anisotropic interactions favoring contact between
the more highly charged ends of the side chains. Us-
ing atomic coordinates at rest in the CHARMM force
field [2], we fixed δi = 0.696 Å for the aminoethyl side
chain and δi = 0.151 Å for the carboxyethyl side chain.
The excluded solvent interaction penalizes charged sites
whose hard cores approach within a solvation shell of
width rsh, applying a maximum energy penalty equal to
fsh times the solvation energy for each site. The Coulomb
interaction uses a distance-dependent permittivity that
linearly decays from ε0 at contact to the bulk water value,
ε∞ = 80, at a separation of λD.

We fixed the four remaining parameters of the charged-
charged interaction to match free energies calculated us-
ing all-atom simulations of acetate and methylammo-
nium in water [18]. We matched both one-dimensional
free energies between methylammonium N and acetate
carboxyl C and two-dimensional free energies calculated
as a function of both this distance and the distance be-
tween methyl carbons on each molecule. We did not at-
tempt to reproduce the local minimum corresponding to
hydrophobic attraction between methyl groups, since this
geometry would be sterically suppressed by the hydrocar-
bon chains of the side chains. With the exception of this
feature, we were able to match potentials of mean force
for our model and the all-atom simulations remarkably
well, as demonstrated by the agreement of Fig. S5 (c)
with Fig. 1 (a) of Ref. [18] and of Fig. S5 (d) with Fig.

rsh 1.5 Å
fsh 0.01
ε0 20
λD 4 Å

TABLE SVI: Best-fit parameters for nonbonded interactions
between charged side chain sites, adjusted to match all-atom
potentials of mean force for methylammonium and acetate in
solution [18].

S2 (d) of Ref. [18]. The best-fit parameters are listed in
Table SVI.

We used the same functional form and parameters for
the repulsive interactions between like-charged side chain
sites. As far as we know, nobody has conducted all-
atom simulations of the analogous like-charged molecular
analog systems.

For computational efficiency, we cut off the phenethyl-
phenethyl and charged-charged interactions at ranges
beyond which interaction energies are never stronger
than 0.1 kcal/mol. We used a cutoff of 10.98 Å for
phenethyl side chains (11.67 Å after fine-tuning) and
a salt-concentration dependent cutoff for charged side
chains, equal to 14.12 Å at csalt = 0.2 M.

We let the remaining nonbonded interactions (between
backbone and side chain sites, and between phenethyl
and charged side chain sites) be hard-sphere repulsions.
For charged side chain sites, we used the same hard-core
radii as in the electrostatic interactions. For phenethyl
side chain sites, we used the width of the repulsive part,
χκσ0 = 1.512 Å. For backbone sites, we initially used
the radius of the repulsive part of the nitrogen atom’s
Lennard-Jones interaction in CHARMM [2], 1.65 Å. As
discussed in Section S7, we later fine-tuned this param-
eter (to 2.05 Å) to improve the model’s agreement with
experimental X-ray scattering and all-atom simulations.

S4. Monte Carlo simulations

We calculated equilibrium properties of solvated pep-
toids, interfacial peptoids, monolayers, and bilayers by
performing Monte Carlo simulations in the appropriate



9

thermodynamic ensembles, starting from initial condi-
tions described in Sec. S5. In all cases, we used rect-
angular prism simulation boxes with periodic boundary
conditions in three dimensions. When using an interface,
as for interfacial peptoids and monolayers, we fixed two
interfaces in the xy plane, bounding a slab of (implicit)
water, initializing the peptoids or monolayer on one of the
two interfaces. We simulated individual solvated and in-
terfacial peptoids at fixed volume and temperature. We
simulated monolayers at fixed number, water slab vol-
ume, temperature, and in-plane pressure (NV Tps) by
using Monte Carlo moves that change the side lengths
of the simulation box while maintaining both the surface
pressure and the total volume of the water slab. We sim-
ulated the bilayer at fixed NV Tps with ps = 0. In both
cases, we sampled the variable-aspect-ratio ensemble by
selecting at random a dimension α ∈ {x, y, z}, changing
the corresponding box side from Lα to exp(r)Lα, where
r is a random number between −∆aspect and ∆aspect,
changing the other box sides from Lβ to exp(−r/2)Lβ ,
scaling all coordinates by the same factors, and accept-
ing the move according to a Metropolis criterion for the
weight exp(−(U + (LxLy)ps)/kBT ), where U is the po-
tential energy. We used ∆aspect = 0.002 and attempted
the moves with frequency 0.15/N , where N is the number
of coarse-grained sites. Note that the hydrostatic pres-
sure is not relevant because the effects of water at at-
mospheric pressure are implicitly included in the coarse-
grained potential energy function.

In addition to the box side length Monte Carlo moves,
we used two kinds of local moves of single coarse-grained
sites: translations within a cube of width 0.8 Å and
rotations of the symmetry axes from n̂ to n̂′, where
n̂′ = (n̂ + ~r)/|n̂ + ~r| and ~r is a random vector chosen
within a box of width 1.6. We attempted translation
moves with frequency 0.5, and attempted rotation moves
with the remainder of the frequency.

We simulated stacked bilayers used in X-ray scattering
experiments by creating a periodic stack of n distinct bi-
layers as follows. We replicated a bilayer, stacked it in
the z direction with 6 nm of (implicit) solvent in between,
performed NV Tps simulations to allow the bilayers to
separately evolve, then performed additional simulations
including “evaporation moves.” In an evaporation move,
the space between two bilayers is selected at random,
changed by a value between -0.4 Å and 0.4 Å, and ac-
cepted according to a normal Metropolis criterion. We
found that it was not necessary to bias the bilayers to
“evaporate” water; when bilayers diffused into contact
via the evaporation moves, they tended to stay in con-
tact due to attractive interactions.

Using Monte Carlo simulations instead of molecular
dynamics simulations allowed us to efficiently sample
configuration space of a model with complex, anisotropic
pair and three-body interactions. Although (in contrast
to molecular dynamics) our Monte Carlo simulations pro-
vide only a rough approximation of realistic dynamics,
an estimate for the equivalent time scales sampled in the

simulations can be made by calculating diffusion in the
dilute limit. For a hypothetical isolated site, the trans-
lational diffusion coefficient is Dt = pt∆t

2/6τ0, where
pt = 0.5 is the probability to make a translation move,
∆t = 0.4 Å is the maximum step size, and τc is the time
per Monte Carlo cycle. Equating this with the Stokes-
Einstein relation for diffusion of a coarse-grained site of
typical radius 2.05 Å (backbone site), this sets the time
scale to be τ = 1.2 × 10−13 sec. Typical simulations on
one CPU simulated order 100 peptoids (order 104 sites)
for 108 to 109 Monte Carlo cycles, corresponding to an
ellapsed time of 10 to 100 µs.

We optimized the speed of our simulations by em-
ploying a hybrid neighbor-finding scheme for nonbonded
interactions. We found that it was most efficient to
use both neighbor lists and a cell structure with linked
lists [19]. That is, we identified candidate interacting
pairs from neighbor lists, which we generated from pairs
in neighboring cells. By using a neighbor list, we were
able to search for interacting pairs within a sphere of
volume 4πr3/3 ≈ 4.2r3, where r is the interaction range,
rather than within a nine-cell cube of volume 9r3. We
updated neighbor lists and linked lists after each ac-
cepted translation move, since this generated little ad-
ditional overhead. Because the interaction cutoff be-
tween phenethyl side chain sites (11.67 Å) and between
charged side chain sites (14.1151 Å at 0.2 M salt) is signif-
icantly larger than the interaction cutoff for the more nu-
merous, purely repulsive backbone-backbone and mixed-
type interactions (3.71 Å for backbone-carboxyethyl side
chain interactions), we found that it was most effi-
cient to use separate neighbor lists and linked lists for
phenethyl-phenethyl, charged-charged, and short-range
interactions.

After optimizing the neighbor-finding scheme, the cal-
culation of energies between the long-range-interacting
anisotropic side chain sites became the costliest part of
our simulations, comprising around 63% of the total sim-
ulation time. Even compounding this cost with our need
to perform both rotations and translations, we estimate
that our model is no more than six times slower than a
similarly optimized simulation of a system with simple
isotropic interactions of a similar range (e.g. screened
Coulomb).

S5. Initialization

Although the equilibrium properties of peptoid phases
should in principle be independent of initial conditions,
for computational efficiency we chose to start from well-
ordered initial conditions, since melting unstable ordered
structures typically occurs faster than the nucleation
and growth of ordered phases. We initialized peptoids,
monolayers, and bilayers in low-energy, ordered config-
urations as sketched in Fig. S6 (a-i). Anticipating that
extended peptoid backbones in monolayers and bilayers
would zigzag every two monomers to allow greater sep-
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FIG. S6: Flow chart showing how we initialized our simulations. (a) First, we minimized the potential energy of a single
peptoid constrained to remain in an extended, ordered configuration with a two-monomer repeat unit. (b) Starting from a
perfect brick arrangement of these minimized peptoids, we found a low-energy ordered monolayer by performing a Monte Carlo
search within a space of ordered monolayers. (c) Starting from two copies of the minimum-energy ordered monolayer, we rigidly
moved the two leaves to find the lowest-energy bilayer. (d) Starting from this bilayer configuration, we then found a low-energy
ordered bilayer by performing a Monte Carlo search within a space of ordered bilayers. Finally, starting from the appropriate
energy-minimized configurations, we performed equilibrium simulations of (e) isolated solvated peptoids, (f) monolayers, (g)
isolated bilayers, and (h) stacked bilayers.

aration between alternating charged and nonpolar side
chains, we first searched for low-energy backbone con-
figurations subject to this zigzag constraint, shown in
Fig. S6 (a). Numerically minimizing over the six de-
grees of freedom (c, rz, nz0, nφ0, nz1, nφ1) characterizing
the zigzag pattern, we found a backbone configuration
with an energy only 0.25 kcal/mol/monomer greater than
the energy of the unconstrained minimum. This low
value demonstrates the ability of the peptoid backbone
to accommadate a planar, extended, amphiphilic pattern.
We attached side chains to this backbone in their fully
energy-minimized configurations relative to the backbone
directors n̂i.

Next, as illustrated in Fig. S6 (b), we constructed low-
energy monolayer by performing a Monte Carlo search on
an ordered monolayer of block-28 peptoids. We initial-
ized the monolayer by replicating a low-energy extended
peptoid in the xy plane, alternately offsetting rows of
peptoids by half a peptoid length to satisfy the “per-
fect brick” configuration favored by charged interactions.
Then, we performed a Monte Carlo search for the low-
est energy monolayer within a restricted space of ordered
monolayers. We allowed four lattice parameters to vary:
the monomer spacing c, the offset in x and y between
neighboring rows of peptoids, and the spacing xt be-
tween termini in a row of peptoids. In addition, for each

of four monomer types (aminoethyl, carboxyethyl, and
separate types for phenethyl sites in aminoethyl and car-
boxyethl blocks), we varied the five degrees of freedom
(three translational and two rotational) characterizing
the backbone site and the five degrees of freedom char-
acterizing the configuration of the side chain site relative
to the backbone. We performed the search for a range of
temperatures and used the lowest-energy configuration
sampled in all the searches as the starting conditions for
our equilibrium simulations.

Once we found a low-energy ordered monolayer, we
turned it into a bilayer by replicating two copies and
sandwiching them into bilayers offset by translations in
three dimensions (Fig. S6 (c)). First, we found a good
starting point by rigidly moving the two leaves to find
the lowest energy possible. We implemented this initial
search by directly enumerating a three-dimensional grid
of energies. Then, we performed a Monte Carlo search on
the ordered bilayer (Fig. S6 (d)). This search was simi-
lar to the ordered monolayer search, except that now we
considered eight monomer types instead of four, treating
the monomers on the two leaves separately. Fig. S6 (l)
shows the lowest energy found after x Monte Carlo steps
for the various temperatures. Fig. S6 (m) shows the final
lowest energy for each temperature found after 5 × 107

Monte Carlo steps.
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FIG. S7: Schematic showing how symmetry axis vectors and
separation vectors are used to generate estimated all-atom
configurations (see text). For each coarse-grained site, a prin-
ciple symmetry axis (thick arrow) and a complementary dis-
placement vector (thin arrow) describe an orientation used to
construct positions for atoms associated with the site.

Starting from these initial conditions, we conducted
equilibrium simulations of solvated and interfacial pep-
toids, monolayers, and peptoids. We used system sizes of
48 (2× 24) peptoids for the monolayers, 96 (2× 2× 24)
peptoids for the bilayers, and 192 (2 × 96) peptoids for
the stacked bilayers.

S6. All-atom configurations and scattering spectra

Keeping track of principle axes of symmetry for each
coarse-grained site allows us to combine coarse-grained
configurations with locally favored covalent chemistry to
generate estimated all-atom configurations. Fig. S7 il-
lustrates our method. For each site, we define a plane
from two vectors, the symmetry axis n̂ and a comple-
mentary displacement vector, which is either a backbone-

backbone separation ~r back
i−1 − ~r back

i (for backbone sites
or charged side chains sites) or a backbone–side chain
separation ~r back

i − ~r side
i (for phenethyl side chain sites).

Charged and phenethyl side chain sites are treated dif-
ferently because their symmetry axes are parallel and
perpendicular, respectively, to their side chain hydrocar-
bon chains. Once a plane has been defined for each
site, we place atoms associated with each site in po-
sitions relative to these planes according to their low-
energy configurations in the MFTOID extension [1] of
the CHARMM forcefield [2]. Under this procedure,
most atoms are placed on their respective planes, while
amino and methylene hydrogens are placed out of their
planes due to their tetrahedral coordination. In con-
trast to our assignment of molecular analogs for inter-
action parametrization, we associate the backbone car-
bonyl group with its nearest backbone nitrogen site, to
its right, rather than the farther site to its left. This al-
lows for a better constrained estimate for the carbonyl
atomic positions, especially considering the relative rigid
ω bond separating the carbonyl and the nitrogen [20].

Choosing a displacement vector in addition to each
site’s principle symmetry axis allows us to fully constrain
the orientation of each site and generate all-atom config-
urations. The choice of displacement vector for the back-
bone sites (the backbone-backbone separation) is moti-
vated by the largely planar and extended configurations
found in all-atom simulations of peptoid bilayers [12].
The choice of displacement vector for the side chain sites
is largely arbitrary. For charged side chain sites the
choice only dictates the angular placement of methy-
lene hydrogens, amino hydrogens, and carboxyl oxygens
about the long axis of the site. For phenethyl side chain
sites the choice ensures that the gamma carbon of the
hydrocarbon chain points back toward the backbone.

Once we generated all-atom configurations, we calcu-
lated X-ray scattering spectra at wavevector q via

I(~q) = |
∑
j

fj exp(i~q · ~rj)|2, (S19)

where the sum runs over all atoms for atom j. Eq. S19
assumes that electrons are localized at the atomic sites.
We set the atomic scattering factor fj equal to the atomic
number, since this is nearly exact for the experimental
11 keV X-rays [21]. Because of periodic boundary condi-
tions, the values of ~q must be discretized to be commen-
surate with the periodic box.

We compared to experimental solution X-ray scatter-
ing by taking the radial average, I(q) = 〈I(~q)〉|~q|=q. We
calculated two-dimensional in-plane scattering spectra by
taking a slice at qz = 0, I(qx, qy) = I({qx, qy, 0}). We
calculated radially averaged in-plane spectra by taking
a radial average, I(qxy) = 〈I(qx, qy)〉qx

2+qy
2=qxy

2 . We
calculated transverse spectra for the stack of bilayers
by taking a transverse slice, I(qz) = I({0, 0, qz}). We
normalized all experimental and simulated spectra. For
solution scattering, we normalized by I0 in the Guinier
fit (see main text). For in-plane spectra, we normal-
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ized by the peak of the radially averaged spectra near
qxy = 2π/(4.5Å). For transverse spectra, we normalized
by the peak near qz = 2π/(5.6Å).

S7. Fine-tuning

Using our coarse-grained model parametrized from
small-molecule analogs, we found qualitative agreement
with experimental [22] and all-atom [12] results: peptoids
collapsed into hydrophobic globules in solution and ad-
sorbed to an air-water interface, and monolayers and bi-
layers were stable with dominant X-ray peaks associated
with spacing between parallel peptoids. However, after
looking in detail at various pair distribution functions for
coarse-grained and all-atom bilayers, as well as exper-
imental, all-atom, and coarse-grained X-ray scattering
spectra, we found that we could improve the agreement
of the coarse-grained model by fine-tuning a few param-
eters. Throughout the fine-tuning procedure, we calcu-
lated all-atom and coarse-grained in-plane X-ray scatter-
ing spectra from free-floating bilayers, rather than stacks
of bilayers. We checked for the original and final version
of the model that these spectra were very similar to those
obtained from stacks of bilayers.

First, as shown by comparing the magenta curves (orig-
inal model) to the blue curves (all-atom) in Fig. S8 (a),
we found that aminoethyl side chain sites stayed closer
to the peptoid backbone than in all-atom simulations.
In contrast, distribution functions for phenethyl and car-
boxyethyl side chain sites agreed well with those found in
all-atom simulations (Fig. S8 (b-c)). As shown in Fig. S8
(d), the tendency for aminoethyl side chain sites to stay
near the backbone was inherited from the monomer from
which the side chain bonded potential energy function
was parametrized: in all-atom simulations, the phenethyl
primary amine preferentially populates the cis configura-
tion, while the phenthyl monomer in a bilayer preferen-
tially populates the trans configuration. To correct the
discrepancy between coarse-grained and all-atom simula-
tions in the bilayer, we found that it was convenient to
add -7 kcal/mol to the term of the side chain interaction
(Eq. S3) linear in arctan(r‖/r⊥). After shifting the po-
tential to keep its minimum at 0, this resulted in adjust-
ing the parameters J10 and J11 in Eq. S3 and Table SII
from 418.586 and −1837.99 to 424.643 and −1844.99.

Second, as shown by comparing the magenta curves
(original model) to the black (experiment) and blue (all-
atom) curves in Fig. S8 (e), we found that the X-ray scat-
tering peak corresponding to the spacing between pep-
toids was too weak and occurred at too large a wavenum-
ber (too small a distance). We expected that increasing
the sharpness of the X-ray peak would require increas-
ing some or all of the nonbonded interaction strengths.
We tried all combinations of models created by modulat-
ing the bonded, phenyl-phenyl, and amino-carboxy in-
teraction strengths by the factors {0.8, 1, 1.2}, {1, 1.2},
and {1, 1.2, 1.5}, respectively. We found that varying

the bonded and amino-carboxy interaction strengths had
little effect on the X-ray peak, but varying the phenyl-
phenyl interaction strength by a factor of 1.5 was suffi-
cient to yield an X-ray peak with the same shape as the
experimental and all-atom peaks, albeit still shifted to
larger wave numbers. In Fig. S8, the brown curves (“ver-
sion 2”) denotes the version of the model with the phenyl-
phenyl interaction increased by 50% and the amino side
chain interaction biased toward trans.

After these two corrections, we still needed to cor-
rect the location of the polymer-spacing X-ray peak.
After comparing several distribution functions between
coarse-grained and all-atom simulations, including the
selections shown in Fig. S8 (f-h), we suspected that the
discrepancy was arising from a combination of two fac-
tors: the backbone sites and/or the phenethyl side chain
sites were too small. For instance, Fig. S8 (f) shows
that while backbone sites in the coarse-grained model
were approaching as close as their hard-core diameter,
3.3 Å, backbone nitrogens in the all-atom simulations
did not approach closer than 4 Å. Not surprisingly, us-
ing nitrogen’s van der Waals radius for the backbone site
was insufficient to account for the steric repulsion be-
tween entire coarse-grained sites. Similarly, Fig. S8 (f)
shows that while phenethyl side chain sites in the coarse-
grained model were approaching as close as the width of
the repulsive part of the Gay-Berne potential (Eq. S6),
2χκσ0 = 3.024 Å, the centers of the aromatic rings in the
all-atom simulations did not approach closer than 4 Å.

In contrast, the comparison of relative orientations be-
tween the coarse-grained and all-atom bilayers was rel-
atively good. The first column of fig. S8 (g) shows
the radial distribution function for phenethyl side chain
sites on the same polymer (first row), the same leaf
but different polymers (second row), and different leaves
(third row). Selecting neighbors within approximately
the first shell of these distribution functions, we plot
the orientation-dependent scalar coordinates that enter
the Gay-Berne potential in the next three columns. The
trends in all three of these coordinates match those for
the all-atom simulations, although the all-atom simula-
tions show some fine detail that is missing in the coarser
model. Similarly, Fig. S8 (h) shows that the relative
orientations of aminoethyl and carboxyethyl sites in con-
tact (top plot) and separated by (implicit) solvent (bot-
tom plot) agreed reasonably well after we biased the
aminoethyl side chain to trans.

To simulataneously improve the agreement with X-ray
scattering and distribution functions, we therefore ad-
justed the backbone and phenethyl side chain sizes while
keeping all orientational geometry and interaction ener-
gies fixed. We varied the backbone radius rback and the
phenethyl side chain size σ0 on a grid, rback = 1.65 Å,
1.75 Å, ..., 2.35 Å and σ0=5.6 Å, 5.8 Å, ..., 7.0 Å. We
found that rback = 2.05 Å and σ0 = 6.2 Å yielded the best
results, shown as red curves in Fig. S8. We kept these
values for the version of the model we used to produce
all of the results in the main text.
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�1

).

Experiment
All-atom
Original

Version 2
Final
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1 2 3 0.5 21 1.5 2.5

r · n̂ (Å) nk
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3

2

1

r
k

(Å
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